Serveur d'exploration Santé et pratique musicale

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A little goes a long way: how the adult brain is shaped by musical training in childhood.

Identifieur interne : 001371 ( Main/Exploration ); précédent : 001370; suivant : 001372

A little goes a long way: how the adult brain is shaped by musical training in childhood.

Auteurs : Erika Skoe [États-Unis] ; Nina Kraus

Source :

RBID : pubmed:22915097

Descripteurs français

English descriptors

Abstract

Playing a musical instrument changes the anatomy and function of the brain. But do these changes persist after music training stops? We probed this question by measuring auditory brainstem responses in a cohort of healthy young human adults with varying amounts of past musical training. We show that adults who received formal music instruction as children have more robust brainstem responses to sound than peers who never participated in music lessons and that the magnitude of the response correlates with how recently training ceased. Our results suggest that neural changes accompanying musical training during childhood are retained in adulthood. These findings advance our understanding of long-term neuroplasticity and have general implications for the development of effective auditory training programs.

DOI: 10.1523/JNEUROSCI.1949-12.2012
PubMed: 22915097
PubMed Central: PMC6703757


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A little goes a long way: how the adult brain is shaped by musical training in childhood.</title>
<author>
<name sortKey="Skoe, Erika" sort="Skoe, Erika" uniqKey="Skoe E" first="Erika" last="Skoe">Erika Skoe</name>
<affiliation wicri:level="1">
<nlm:affiliation>Auditory Neuroscience Laboratory, Northwestern University, Evanston, Illinois 60208, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Auditory Neuroscience Laboratory, Northwestern University, Evanston, Illinois 60208</wicri:regionArea>
<wicri:noRegion>Illinois 60208</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kraus, Nina" sort="Kraus, Nina" uniqKey="Kraus N" first="Nina" last="Kraus">Nina Kraus</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:22915097</idno>
<idno type="pmid">22915097</idno>
<idno type="doi">10.1523/JNEUROSCI.1949-12.2012</idno>
<idno type="pmc">PMC6703757</idno>
<idno type="wicri:Area/Main/Corpus">001260</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001260</idno>
<idno type="wicri:Area/Main/Curation">001260</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001260</idno>
<idno type="wicri:Area/Main/Exploration">001260</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">A little goes a long way: how the adult brain is shaped by musical training in childhood.</title>
<author>
<name sortKey="Skoe, Erika" sort="Skoe, Erika" uniqKey="Skoe E" first="Erika" last="Skoe">Erika Skoe</name>
<affiliation wicri:level="1">
<nlm:affiliation>Auditory Neuroscience Laboratory, Northwestern University, Evanston, Illinois 60208, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Auditory Neuroscience Laboratory, Northwestern University, Evanston, Illinois 60208</wicri:regionArea>
<wicri:noRegion>Illinois 60208</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kraus, Nina" sort="Kraus, Nina" uniqKey="Kraus N" first="Nina" last="Kraus">Nina Kraus</name>
</author>
</analytic>
<series>
<title level="j">The Journal of neuroscience : the official journal of the Society for Neuroscience</title>
<idno type="eISSN">1529-2401</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acoustic Stimulation (MeSH)</term>
<term>Adolescent (MeSH)</term>
<term>Adult (MeSH)</term>
<term>Brain (physiology)</term>
<term>Electroencephalography (MeSH)</term>
<term>Evoked Potentials, Auditory, Brain Stem (physiology)</term>
<term>Female (MeSH)</term>
<term>Humans (MeSH)</term>
<term>Male (MeSH)</term>
<term>Music (MeSH)</term>
<term>Practice, Psychological (MeSH)</term>
<term>Psychomotor Performance (physiology)</term>
<term>Signal-To-Noise Ratio (MeSH)</term>
<term>Young Adult (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Adolescent (MeSH)</term>
<term>Adulte (MeSH)</term>
<term>Encéphale (physiologie)</term>
<term>Femelle (MeSH)</term>
<term>Humains (MeSH)</term>
<term>Jeune adulte (MeSH)</term>
<term>Musique (MeSH)</term>
<term>Mâle (MeSH)</term>
<term>Performance psychomotrice (physiologie)</term>
<term>Potentiels évoqués auditifs du tronc cérébral (physiologie)</term>
<term>Rapport signal-bruit (MeSH)</term>
<term>Stimulation acoustique (MeSH)</term>
<term>Électroencéphalographie (MeSH)</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Encéphale</term>
<term>Performance psychomotrice</term>
<term>Potentiels évoqués auditifs du tronc cérébral</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Brain</term>
<term>Evoked Potentials, Auditory, Brain Stem</term>
<term>Psychomotor Performance</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Acoustic Stimulation</term>
<term>Adolescent</term>
<term>Adult</term>
<term>Electroencephalography</term>
<term>Female</term>
<term>Humans</term>
<term>Male</term>
<term>Music</term>
<term>Practice, Psychological</term>
<term>Signal-To-Noise Ratio</term>
<term>Young Adult</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Adolescent</term>
<term>Adulte</term>
<term>Femelle</term>
<term>Humains</term>
<term>Jeune adulte</term>
<term>Musique</term>
<term>Mâle</term>
<term>Rapport signal-bruit</term>
<term>Stimulation acoustique</term>
<term>Électroencéphalographie</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Playing a musical instrument changes the anatomy and function of the brain. But do these changes persist after music training stops? We probed this question by measuring auditory brainstem responses in a cohort of healthy young human adults with varying amounts of past musical training. We show that adults who received formal music instruction as children have more robust brainstem responses to sound than peers who never participated in music lessons and that the magnitude of the response correlates with how recently training ceased. Our results suggest that neural changes accompanying musical training during childhood are retained in adulthood. These findings advance our understanding of long-term neuroplasticity and have general implications for the development of effective auditory training programs.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">22915097</PMID>
<DateCompleted>
<Year>2012</Year>
<Month>11</Month>
<Day>19</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>02</Month>
<Day>25</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1529-2401</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>32</Volume>
<Issue>34</Issue>
<PubDate>
<Year>2012</Year>
<Month>Aug</Month>
<Day>22</Day>
</PubDate>
</JournalIssue>
<Title>The Journal of neuroscience : the official journal of the Society for Neuroscience</Title>
<ISOAbbreviation>J Neurosci</ISOAbbreviation>
</Journal>
<ArticleTitle>A little goes a long way: how the adult brain is shaped by musical training in childhood.</ArticleTitle>
<Pagination>
<MedlinePgn>11507-10</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1523/JNEUROSCI.1949-12.2012</ELocationID>
<Abstract>
<AbstractText>Playing a musical instrument changes the anatomy and function of the brain. But do these changes persist after music training stops? We probed this question by measuring auditory brainstem responses in a cohort of healthy young human adults with varying amounts of past musical training. We show that adults who received formal music instruction as children have more robust brainstem responses to sound than peers who never participated in music lessons and that the magnitude of the response correlates with how recently training ceased. Our results suggest that neural changes accompanying musical training during childhood are retained in adulthood. These findings advance our understanding of long-term neuroplasticity and have general implications for the development of effective auditory training programs.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Skoe</LastName>
<ForeName>Erika</ForeName>
<Initials>E</Initials>
<AffiliationInfo>
<Affiliation>Auditory Neuroscience Laboratory, Northwestern University, Evanston, Illinois 60208, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kraus</LastName>
<ForeName>Nina</ForeName>
<Initials>N</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Neurosci</MedlineTA>
<NlmUniqueID>8102140</NlmUniqueID>
<ISSNLinking>0270-6474</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000161" MajorTopicYN="N">Acoustic Stimulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000293" MajorTopicYN="N">Adolescent</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000328" MajorTopicYN="N">Adult</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001921" MajorTopicYN="N">Brain</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004569" MajorTopicYN="N">Electroencephalography</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016057" MajorTopicYN="N">Evoked Potentials, Auditory, Brain Stem</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009146" MajorTopicYN="Y">Music</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011214" MajorTopicYN="Y">Practice, Psychological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011597" MajorTopicYN="N">Psychomotor Performance</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059629" MajorTopicYN="N">Signal-To-Noise Ratio</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055815" MajorTopicYN="N">Young Adult</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>8</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>8</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>12</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22915097</ArticleId>
<ArticleId IdType="pii">32/34/11507</ArticleId>
<ArticleId IdType="doi">10.1523/JNEUROSCI.1949-12.2012</ArticleId>
<ArticleId IdType="pmc">PMC6703757</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Feb 19;99(4):2309-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11842227</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Neurosci. 2002 Jul;5(7):688-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12068300</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 Apr 18;300(5618):498-502</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12702879</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Exp Neuropsychol. 2003 Aug;25(5):643-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12815502</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurophysiol. 2004 Jul;92(1):73-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15014105</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Psychobiol. 2005 Apr;46(3):262-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15772967</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain Res Cogn Brain Res. 2005 Sep;25(1):161-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15935624</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain Cogn. 2005 Nov;59(2):124-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16054741</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurophysiol. 2005 Nov;94(5):3590-600</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16093336</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann N Y Acad Sci. 2005 Dec;1060:93-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16597755</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain. 2006 Oct;129(Pt 10):2593-608</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16959812</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Cogn Sci. 2007 Sep;11(9):369-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17698406</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Oct 2;104(40):15894-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17898180</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cogn Neurosci. 2008 Oct;20(10):1892-902</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18370594</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2008 Sep 24;28(39):9632-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18815249</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cereb Cortex. 2009 Mar;19(3):712-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18832336</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2009 Mar 11;29(10):3019-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19279238</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain Lang. 2009 Sep;110(3):135-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19366639</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2009 Nov 11;29(45):14100-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19906958</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ear Hear. 2010 Jun;31(3):302-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20084007</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Neurosci. 2010 Aug;11(8):599-605</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20648064</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Assoc Res Otolaryngol. 2011 Feb;12(1):89-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20878201</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hippocampus. 2012 Feb;22(2):347-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21136521</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuropsychology. 2011 May;25(3):378-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21463047</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2011 Apr 6;31(14):5383-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21471373</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cortex. 2012 Mar;48(3):360-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21536264</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cortex. 2011 Oct;47(9):1126-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21665201</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cereb Cortex. 2012 May;22(5):1180-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21799207</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Sep 13;108(37):15516-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21844339</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Psychol Aging. 2012 Jun;27(2):410-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21910546</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Psychol Sci. 2011 Nov;22(11):1425-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21969312</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurophysiol. 2012 Mar;107(5):1325-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22131377</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurobiol Aging. 2012 Jul;33(7):1483.e1-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22227006</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann N Y Acad Sci. 2012 Apr;1252:100-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22524346</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 May 15;109(20):7877-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22547804</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Electroencephalogr Clin Neurophysiol. 1973 Dec;35(6):665-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4128165</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Kraus, Nina" sort="Kraus, Nina" uniqKey="Kraus N" first="Nina" last="Kraus">Nina Kraus</name>
</noCountry>
<country name="États-Unis">
<noRegion>
<name sortKey="Skoe, Erika" sort="Skoe, Erika" uniqKey="Skoe E" first="Erika" last="Skoe">Erika Skoe</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SanteMusiqueV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001371 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001371 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SanteMusiqueV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:22915097
   |texte=   A little goes a long way: how the adult brain is shaped by musical training in childhood.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:22915097" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a SanteMusiqueV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Mon Mar 8 15:23:44 2021. Site generation: Mon Mar 8 15:23:58 2021